Weight Trimming and Propensity Score Weighting
نویسندگان
چکیده
Propensity score weighting is sensitive to model misspecification and outlying weights that can unduly influence results. The authors investigated whether trimming large weights downward can improve the performance of propensity score weighting and whether the benefits of trimming differ by propensity score estimation method. In a simulation study, the authors examined the performance of weight trimming following logistic regression, classification and regression trees (CART), boosted CART, and random forests to estimate propensity score weights. Results indicate that although misspecified logistic regression propensity score models yield increased bias and standard errors, weight trimming following logistic regression can improve the accuracy and precision of final parameter estimates. In contrast, weight trimming did not improve the performance of boosted CART and random forests. The performance of boosted CART and random forests without weight trimming was similar to the best performance obtainable by weight trimmed logistic regression estimated propensity scores. While trimming may be used to optimize propensity score weights estimated using logistic regression, the optimal level of trimming is difficult to determine. These results indicate that although trimming can improve inferences in some settings, in order to consistently improve the performance of propensity score weighting, analysts should focus on the procedures leading to the generation of weights (i.e., proper specification of the propensity score model) rather than relying on ad-hoc methods such as weight trimming.
منابع مشابه
An Application of Non-response Bias Reduction Using Propensity Score Methods
In many statistical studies some units do not respond to a number or all of the questions. This situation causes a problem called non-response. Bias and variance inflation are two important consequences of non-response in surveys. Although increasing the sample size can prevented variance inflation, but cannot necessary adjust for the non-response bias. Therefore a number of methods ...
متن کاملComparing Weighting Methods in Propensity Score Analysis
The propensity score method is frequently used to deal with bias from standard regression in observational studies. The propensity score method involves calculating the conditional probability (propensity) of being in the treated group (of the exposure) given a set of covariates, weighting (or sampling) the data based on these propensity scores, and then analyzing the outcome using the weighted...
متن کاملUsing propensity score-based weighting in the evaluation of health management programme effectiveness.
When the randomized controlled trial is unfeasible, programme evaluators attempt to emulate the randomization process in observational studies by creating a control group that is essentially equivalent to the treatment group on known characteristics and trust that the remaining unknown characteristics are inconsequential and will not bias the results. In recent years, adjustment procedures base...
متن کاملGeneralizing observational study results: applying propensity score methods to complex surveys.
OBJECTIVE To provide a tutorial for using propensity score methods with complex survey data. DATA SOURCES Simulated data and the 2008 Medical Expenditure Panel Survey. STUDY DESIGN Using simulation, we compared the following methods for estimating the treatment effect: a naïve estimate (ignoring both survey weights and propensity scores), survey weighting, propensity score methods (nearest ...
متن کاملAn Application of Propensity Modeling: Comparing Unweighted and Weighted Logistic Regression Models for Nonresponse Adjustments
Using logistic regression models to predict the probability that a unit will respond is one method for adjusting for survey nonresponse. The inverse of the propensity score can be the weight adjustment factor. This method can make use of more predictive variables than in the weighting class method. Having used this method for two previous rounds of a large physician survey, this paper describes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011